Application of the cause-consequence diagram method to static systems

نویسندگان

  • John D. Andrews
  • Louise M. Ridley
چکیده

In the last 30 years various mathematical models have been used to identify the effect of component failures on the performance of a system. The most frequently used technique for system reliability assessment is Fault Tree Analysis (FTA) and a large proportion of its popularity can be attributed to the fact that it provides a very good documentation of the way that the system failure logic was developed. Exact quantification of the fault tree, however, can be problematic for very large systems and in such situations approximations can be used. Alternatively an exact result can be obtained via the conversion of the fault tree into a binary decision diagram. The binary decision diagram, however, loses all failure logic documentation during the conversion process. This paper outlines the use of the Cause-Consequence Diagram method as a tool for system risk and reliability analysis. As with the fault tree analysis method, the Cause-Consequence Diagram documents the failure logic of the system. In addition to this the Cause-Consequence Diagram produces the exact failure probability in a very efficient calculation procedure. The Cause-Consequence Diagram technique has been applied to a static system and shown to yield the same result as those produced by the solution of the equivalent fault tree and binary decision diagram. On the basis of this, general rules have been devised for the correct construction of the Cause-Consequence Diagram given a static system. The use of the cause-consequence method in this manner has significant implications in terms of efficiency of the reliability analysis and can be shown to have benefits for static systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of the Residual Stress and Bias Voltage on the Phase Diagram and Frequency Response of a Capacitive Micro-Structure

In this paper, static and dynamic behavior of a varactor of a micro-phase shifter under DC, step DC and AC voltages and effects of the residual stress on the phase diagram have been studied. By presenting a mathematical modeling, Galerkin-based step by step linearization method (SSLM) and Galerkin-based reduced order model have been used to solve the governing static and dynamic equations, resp...

متن کامل

Cause-consequence analysis of non-repairable phased missions

Many systems can be modelled as a mission made up of a sequence of discrete phases. Each phase has a different requirement for successful completion and mission failure will result if any phase is unsuccessful. Fault tree analysis and Markov techniques have been used previously to model this type of system for non-repairable and repairable systems respectively. Cause-consequence analysis is an ...

متن کامل

Application of the linear Differential Equations on the Plane and Elements of Nonlinear Systems, In Economics

In recent years, it has become increasingly important to incorporate explicit dynamics in economic analysis. These two tools that mathematicians have developed, differential equations and optimal control theory, are probably the most basic for economists to analyze dynamic problems. In this paper I will consider the linear differential equations on the plane (phase diagram) and elements of nonl...

متن کامل

A Novel Method to Increase the Power Capacity of Transmission Lines Using Transformerless Static Synchronous Series Compensator

In this paper a transformerless Static Synchronous Series Compensator (SSSC) to increase the power capacity of a 230 kV transmission line is proposed. In order to eliminate the transformer, a 15-level cascade H Bridge (CHB) inverter is employed within the proposed compensator structure to inject reactive power to the transmission line. The theory of instantaneous p-q power using in the compensa...

متن کامل

Inner Permanent Magnet Synchronous Machine Optimization for HEV Traction Drive Application in Order to Achieve Maximum Torque per Ampere

Recently, Inner permanent magnet (IPM) synchronous machines have been introduced as a possible traction motor in hybrid electric vehicle (HEV) and traction applications due to their unique merits. In order to achieve maximum torque per ampere (MTPA), optimization of the motor geometry parameters is necessary. This paper Presents a design method to achieve minimum volume, MTPA and minimum ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Rel. Eng. & Sys. Safety

دوره 75  شماره 

صفحات  -

تاریخ انتشار 2002